Inhibition of glycogen biosynthesis via mTORC1 suppression as an adjunct therapy for Pompe disease.

نویسندگان

  • Karen M Ashe
  • Kristin M Taylor
  • Qiuming Chu
  • Elizabeth Meyers
  • Allen Ellis
  • Varvara Jingozyan
  • Katherine Klinger
  • Patrick F Finn
  • Christopher G F Cooper
  • Wei-Lien Chuang
  • John Marshall
  • John M McPherson
  • Robert J Mattaliano
  • Seng H Cheng
  • Ronald K Scheule
  • Rodney J Moreland
چکیده

Pompe disease, also known as glycogen storage disease (GSD) type II, is caused by deficiency of lysosomal acid alpha-glucosidase (GAA). The resulting glycogen accumulation causes a spectrum of disease severity ranging from a rapidly progressive course that is typically fatal by 1-2years of age to a more slowly progressive course that causes significant morbidity and early mortality in children and adults. Recombinant human GAA (rhGAA) improves clinical outcomes with variable results. Adjunct therapy that increases the effectiveness of rhGAA may benefit some Pompe patients. Co-administration of the mTORC1 inhibitor rapamycin with rhGAA in a GAA knockout mouse reduced muscle glycogen content more than rhGAA or rapamycin alone. These results suggest mTORC1 inhibition may benefit GSDs that involve glycogen accumulation in muscle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Suppression of mTORC1 activation in acid-α-glucosidase-deficient cells and mice is ameliorated by leucine supplementation.

Pompe disease is due to a deficiency in acid-α-glucosidase (GAA) and results in debilitating skeletal muscle wasting, characterized by the accumulation of glycogen and autophagic vesicles. Given the role of lysosomes as a platform for mTORC1 activation, we examined mTORC1 activity in models of Pompe disease. GAA-knockdown C2C12 myoblasts and GAA-deficient human skin fibroblasts of infantile Pom...

متن کامل

A New Mutation Causing Severe Infantile-Onset Pompe Disease Responsive to Enzyme Replacement Therapy

Pompe disease (PD), also known as “glycogen storage disease type II (OMIM # 232300)” is a rare autosomal recessive disorder characterized by progressive glycogen accumulation in cellular lysosomes. It ultimately leads to cellular damage. Infantile-onset Pompe disease (IOPD) is the most severe type of this disease and is characterized by severe hypertrophic cardiomyopathy and generalized hypoton...

متن کامل

Headache: A Presentation of Pompe Disease; A Case Report

Pompe disease, also termed glycogen storage disease type II or acid maltase deficiency, caused by deficient activity of acid alpha-glucosidase (GAA), the glycogen degrading lysosomal enzyme. As a result, massive lysosomal glycogen deposits in the numerous organs including the muscles. In Pompe disease weakness of truncal muscles is a prominent presentation which results in respiratory failure a...

متن کامل

Late-onset Pompe Disease with Elevated Liver Transaminases: A Case Report

Pompe disease or type II glycogen storage disease is a rare autosomal hereditary disease. The prevalence of the disease is about 1 in 40,000 to 1 in 300,000 population. It usually occurs as a result of glycogen accretion following acid maltase deficiency. The current treatment is enzyme replacement therapy, which may slow down the disease progression. Sometimes, the clinical presentation can be...

متن کامل

Antisense Oligonucleotide-mediated Suppression of Muscle Glycogen Synthase 1 Synthesis as an Approach for Substrate Reduction Therapy of Pompe Disease

Pompe disease is an autosomal recessive disorder caused by a deficiency of acid α-glucosidase (GAA; EC 3.2.1.20) and the resultant progressive lysosomal accumulation of glycogen in skeletal and cardiac muscles. Enzyme replacement therapy using recombinant human GAA (rhGAA) has proven beneficial in addressing several aspects of the disease such as cardiomyopathy and aberrant motor function. Howe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular genetics and metabolism

دوره 100 4  شماره 

صفحات  -

تاریخ انتشار 2010